Title: Dashport Obstacles

Year level band: 3-4

Description: Students will design and build track for Dash to manoeuvre by choosing one element from each zones to include: an obstacle, a movement and path guidelines from the Dashport Card – Then programme Dash to traverse your track successfully. *Sustainability focus – ensure that your track can be deconstructed with minimal waste.

Resources: Tablet with Blocky for Dash and Dot robots Dash Robot (this activity can be adapted for other types of robots) Selection of cardboard, tubes, craft supplies, Lego etc.

Prior Student Learning: Students may benefit from having some experience with the Blockly app or other visual coding programs and have had time to explore the features of the Dash Robot.

Australian Curriculum alignment summary

Digital Technologies:

This learning sequence provides an opportunity for students to create a digital solution involving user choice by designing an obstacle course for the Dash Robot to traverse autonomously through the use of an algorithm.

Year	Content Descriptors
	Define simple problems, and describe and follow a sequence of steps and decisions (algorithms) needed to solve them (ACTDIP010)
Year 4	Implement simple digital solutions as visual programs with algorithms involving branching (decisions) and user input (ACTDIP011)
	Plan, create and communicate ideas and information independently and with others, applying agreed ethical and social protocols (ACTDIP013)

	Summary of tasks
Learning hook	A new Robot Amusement Park has opened for the Dash and you have been asked to design and build a prototype 2mx2m obstacle course. You

will film your final design and provide a voice-over explaining the features included.What makes an obstacle course challenging and interesting?Conduct some research on obstacle courses and identify the features of a course. Eg. Various angles & placement of obstacles.Achievement StandardsDigital Technologies: By the end of Year 4, students define simple problems, design and implement digital solutions using algorithms that involve decision-making and user input. They explain how the solutions meet their purposes.Learning Map (Sequence)• Draw and label a diagram showing the planned obstacle course • Describe the algorithm for Dash to autonomously complete the course using al flowchart or descriptive language • Completed Algorithm should be unambiguous and include branching using an if, then, else statement as well as user input.Learning inputTeacher provides students with the Dashport card and allow students sufficient time to explore and experiment with different combinations from each zone on the Dashpot card during the exploration stage.Learning constructionDiscuss the challenge again with the students and define the parameters for their design diagram. Reliterate the size limitations of 2m x 2m & sustainability requirements.Allow students time to identify challenges that they must overcome with each obstacle choice on the Dashport card – encourage prototyping and teration.Ensure all groups produce a labelled diagram that meets the requirements by including one element from each zone from the Dashport card. All changes must be clearly noted on this plan through each iteration.Students to produce a flowchart or algorithm written in descriptive language.Learning constructionVietuents to					
Conduct some research on obstacle courses and identify the features of a course. Eg. Various angles & placement of obstacles. Achievement Standards Digital Technologies: By the end of Year 4, students define simple problems, design and implement digital solutions using algorithms that involve decision-making and user input. They explain how the solutions meet their purposes. Learning Map (Sequence) Draw and label a diagram showing the planned obstacle course Describe the algorithm for Dash to autonomously complete the course using al flowchart or descriptive language Completed Algorithm should be unambiguous and include branching using an if, then, else statement as well as user input. Learning input Teacher provides students with the Dashport card and allow students sufficient time to explore and execute an algorithm using Dash. Encourage students to experiment with different options. Ensure students to experiment with different combinations from each zone on the Dashpot card during the exploration stage. Learning construction Discuss the challenge again with the students and define the parameters for their design diagram. Reiterate the size limitations of 2m x 2m & sustainability requirements. Allow students time to identify challenges that they must overcome with each obstacle choice on the Dashpot card - ancourage prototyping and testing. Ensure all groups produce a labelled diagram that meets the requirements by including one element from each zone from the Dashpot card. "All changes must be clearly noted on this plan through each iteration.					
a course. Eg. Various angles & placement of obstacles. Achievement Standards Digital Technologies: By the end of Year 4, students define simple problems, design and implement digital solutions using algorithms that involve designon-making and user input. They explain how the solutions meet their purposes. Learning Map (Sequence) Draw and label a diagram showing the planned obstacle course Describe the algorithm for Dash to autonomously complete the course using a flowchart or descriptive language Completed Algorithm should be unambiguous and include branching using an if, then, else statement as well as user input. Learning input Teacher provides students with the Dashport card and allow students sufficient time to explore and experiment with different options. Ensure students are familiar with Blockly for Dash and check that they can create and execute an algorithm using Dash. Encourage students to experiment with different combinations from each zone on the Dashpot card during the exploration stage. Learning construction Discuss the challenge again with the students and define the parameters for their design diagram. Reiterate the size limitations of 2m x 2m & sustainability requirements. Allow students time to identify challenges that they must overcome with each obstacle choice on the Dashport card – encourage prototyping and testing. Ensure all groups produce a labelled diagram that meets the requirements by including one element from each zone from the Dashport card. "All changes must be clearly noted on this plan through each lite		What makes an obstacle course challenging and interesting?			
Learning Map (Sequence) By the end of Year 4, students define simple problems, design and implement digital solutions using algorithms that involve decision-making and user input. They explain how the solutions meet their purposes. • Draw and label a diagram showing the planned obstacle course • Describe the algorithm for Dash to autonomously complete the course using a flowchart or descriptive language • Completed Algorithm should be unambiguous and include branching using an if, then, else statement as well as user input. Learning input Teacher provides students with the Dashport card and allow students sufficient time to explore and experiment with different options. Ensure students are familiar with Blockly for Dash and check that they can create and execute an algorithm for Jash. Encourage students to experiment with different combinations from each zone on the Dashpot card during the exploration stage. Learning construction Discuss the challenge again with the students and define the parameters for their design diagram. Reiterate the size limitations of 2m x 2m & sustainability requirements. Allow students time to identify challenges that they must overcome with each obstacle choice on the Dashport card – encourage prototyping and testing. Ensure all groups produce a labeled diagram that meets the requirements by including one element from each zone from the Dashport card. "All changes must be clearly noted on this plan through each iteration. Students to produce a flowchart or algorithm written in descriptive language. Students to produce a flowchart or algorithm written in descriptive language. Students to produce					
(Sequence) Draw and label a diagram showing the planned obstacle course Describe the algorithm for Dash to autonomously complete the course using a flowchart or descriptive language Completed Algorithm should be unambiguous and include branching using an if, then, else statement as well as user input. Learning input Teacher provides students with the Dashport card and allow students sufficient time to explore and experiment with different options. Ensure students are familiar with Blockly for Dash and check that they can create and execute an algorithm using Dash. Encourage students to experiment with different combinations from each zone on the Dashpot card during the exploration stage. Learning construction Discuss the challenge again with the students and define the parameters for their design diagram. Reiterate the size limitations of 2m x 2m & sustainability requirements. Allow students time to identify challenges that they must overcome with each obstacle choice on the Dashport card – encourage prototyping and testing. Ensure all groups produce a labelled diagram that meets the requirements by including one element from each zone from the Dashport card. "All changes must be clearly noted on this plan through each iteration. Students construct an obstacle course from the labelled diagram within the 2m x 2m size restriction. Create an algorithm for Dash to execute with the aim of autonomously traversing the track. Test the algorithm and track design. Identify any necessary changes and		By the end of Year 4, students define simple problems, design and implement digital solutions using algorithms that involve decision-making			
sufficient time to explore and experiment with different options.Ensure students are familiar with Blockly for Dash and check that they can create and execute an algorithm using Dash.Encourage students to experiment with different combinations from each zone on the Dashpot card during the exploration stage.Learning constructionDiscuss the challenge again with the students and define the parameters for their design diagram. Reiterate the size limitations of 2m x 2m & sustainability requirements.Allow students time to identify challenges that they must overcome with each obstacle choice on the Dashport card – encourage prototyping and testing.Ensure all groups produce a labelled diagram that meets the requirements by including one element from each zone from the Dashport card. *All changes must be clearly noted on this plan through each iteration.Students to produce a flowchart or algorithm written in descriptive language.Students construct an obstacle course from the labelled diagram within the 2m x 2m size restriction.Create an algorithm for Dash to execute with the aim of autonomously traversing the track.Test the algorithm and track design. Identify any necessary changes and	• .	 Describe the algorithm for Dash to autonomously complete the course using a flowchart or descriptive language Completed Algorithm should be unambiguous and include 			
can create and execute an algorithm using Dash.Encourage students to experiment with different combinations from each zone on the Dashpot card during the exploration stage.Learning constructionDiscuss the challenge again with the students and define the parameters for their design diagram. Reiterate the size limitations of 2m x 2m & sustainability requirements.Allow students time to identify challenges that they must overcome with each obstacle choice on the Dashport card – encourage prototyping and testing.Ensure all groups produce a labelled diagram that meets the requirements by including one element from each zone from the Dashport card. *All changes must be clearly noted on this plan through each iteration.Students to produce a flowchart or algorithm written in descriptive language.Students construct an obstacle course from the labelled diagram within the 2m x 2m size restriction.Create an algorithm for Dash to execute with the aim of autonomously traversing the track.Test the algorithm and track design. Identify any necessary changes and	Learning input				
Learning constructionDiscuss the challenge again with the students and define the parameters for their design diagram. Reiterate the size limitations of 2m x 2m & sustainability requirements.Allow students time to identify challenges that they must overcome with each obstacle choice on the Dashport card – encourage prototyping and testing.Ensure all groups produce a labelled diagram that meets the requirements by including one element from each zone from the Dashport card. *All changes must be clearly noted on this plan through each iteration.Students to produce a flowchart or algorithm written in descriptive language.Students construct an obstacle course from the labelled diagram within the 2m x 2m size restriction.Create an algorithm for Dash to execute with the aim of autonomously traversing the track.					
 for their design diagram. Reiterate the size limitations of 2m x 2m & sustainability requirements. Allow students time to identify challenges that they must overcome with each obstacle choice on the Dashport card – encourage prototyping and testing. Ensure all groups produce a labelled diagram that meets the requirements by including one element from each zone from the Dashport card. *All changes must be clearly noted on this plan through each iteration. Students to produce a flowchart or algorithm written in descriptive language. Students construct an obstacle course from the labelled diagram within the 2m x 2m size restriction. Create an algorithm for Dash to execute with the aim of autonomously traversing the track. Test the algorithm and track design. Identify any necessary changes and 					
 each obstacle choice on the Dashport card – encourage prototyping and testing. Ensure all groups produce a labelled diagram that meets the requirements by including one element from each zone from the Dashport card. *All changes must be clearly noted on this plan through each iteration. Students to produce a flowchart or algorithm written in descriptive language. Students construct an obstacle course from the labelled diagram within the 2m x 2m size restriction. Create an algorithm for Dash to execute with the aim of autonomously traversing the track. Test the algorithm and track design. Identify any necessary changes and 	Learning construction	for their design diagram. Reiterate the size limitations of 2m x 2m &			
 requirements by including one element from each zone from the Dashport card. *All changes must be clearly noted on this plan through each iteration. Students to produce a flowchart or algorithm written in descriptive language. Students construct an obstacle course from the labelled diagram within the 2m x 2m size restriction. Create an algorithm for Dash to execute with the aim of autonomously traversing the track. Test the algorithm and track design. Identify any necessary changes and 		each obstacle choice on the Dashport card – encourage prototyping and			
 language. Students construct an obstacle course from the labelled diagram within the 2m x 2m size restriction. Create an algorithm for Dash to execute with the aim of autonomously traversing the track. Test the algorithm and track design. Identify any necessary changes and 		requirements by including one element from each zone from the Dashport card. *All changes must be clearly noted on this plan through			
the 2m x 2m size restriction.Create an algorithm for Dash to execute with the aim of autonomously traversing the track.Test the algorithm and track design. Identify any necessary changes and					
traversing the track. Test the algorithm and track design. Identify any necessary changes and		•			

Learning demo	Students provide feedback to each other identifying aspects that they admire and pose changes that they could implement. Allow time for any of these suggestions to be implemented prior to final assessment. Students film Dash traversing the obstacle track and record all alterations to the initial design on the diagram. Students provide a voice-over, commentary or subtitles to identify features of the track.
Learning reflection	 Have student observe each groups track and collect data on the various elements chosen. Were there similarities in the final tracks? Did any group choose the exact same elements? If they were to begin this activity again from the start, would they choose the same elements? Why/why not? How could they make the task more/less challenging? Have the students made notations on their labelled diagram and planning algorithm to show an iterative approach to the task?

Assessment:

- Students record a video explaining, describing their amusement park.
- Students peer assess projects, according to their research of key indicators for "what makes an obstacle course interesting and challenging" and addressing requirements.
- Teachers collect student algorithm designs as evidence of learning.
- Teachers could use a checklist to check off when students complete certain skills or demonstrate understanding of content knowledge from the Australian Curriculum: Digital Technologies.

	Quantity of knowledge			Quality of understanding	
Criteria	Pre-structural	Uni-structu ral	Multi-struct ural	Relational	Extended abstract
Algorithm	No algorithm shown	Algorithm only shows a limited number of instructions which are not linked	Algorithm has enough instructions to complete the task but not linked or not linked in the correct sequence.	Algorithm has instructions linked in the correct sequence to achieve the task.	Algorithm brings in prior learning and/or independent learning beyond the task and possibly include variables, if statements or loops.
Flowchart	No flowchart produced	Flowchart only shows limited number of instructions	Flowchart has enough instructions to complete the task but not	Flowchart has instructions linked in the correct sequence to achieve the task.	Flowchart brings in prior learning and/or independent learning beyond the task and possibly

CSER Group, The University of Adelaide

		that are not linked	linked or not linked in the correct sequence.	Annotations are included to demonstrate iterative approach	includes variables, if statements or loops.
Track Design	Not all elements included	Track includes most elements but Dash is unable to autonomously traverse	Track includes all elements but Dash is unable to autonomously traverse	Track contains all elements and Dash is able to successfully traverse.	Track is well designed with consideration for Dash to consistently traverse autonomously.

CSER Professional Learning:

This lesson plan corresponds to professional learning in the following CSER Digital Technologies MOOCs:

F-6 Digital Technologies: Foundations

- Unit 7: Algorithms and Programming
- Unit 8: Visual Programming

Further Resources:

Digital Technologies Hub: https://www.digitaltechnologieshub.edu.au/

CSER: https://csermoocs.adelaide.edu.au

Dashport Obtacle Card				
OBSTACLE	OBSTACLE	OBSTACLE		
Travel through a TUNNEL	Push open a GATE and go	Push a PINGPONG ball		
that it at least 9cm long	through	around a corner		
OBSTACLE	OBSTACLE	OBSTACLE		
Knock down a PAPER	Travel through an	Travel up and down a		
TUBE	S-shaped CHANNEL	ramp		
OBSTACLE Traverse around 4 pylons	OBSTACLE Travel under a bridge	OBSTACLE Move through a round about		
TRACK 2 x parallel lines 3 x angles	TRACK 3 curved lines 1 right angle	TRACK 6 straight lines 2 angles greater than a right angle		
TRACK	TRACK	TRACK		
Triangle shape	T intersection	2 straight lines		
1 curved line	2 curved lines	1 curved line		
MOVEMENT	MOVEMENT	MOVEMENT		
Spin on the spot	Zigzag	Move backwards		
Flashing lights	Sing	Looking Left & Right		
MOVEMENT	MOVEMENT	MOVEMENT		
Wink	Nod	Turn left then right		
Move in a circular pattern	Move in a square	Move head in a circle		

Author: Toni Falusi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Computer Science Education Research (CSER) Group, The University of Adelaide.

CSER Group, The University of Adelaide