Sphero - Invent a game

Year level band: 7/8

Description: In this lesson students will explore the use of Sphero by creating a game. In each case, they are to build an accessory and design and build a game board/space and create a game that requires players to code to play. The audience and aim of the game is to be explicit alongside any relevant rules and instructions.

Type: This lesson is a transition from visual programming to general purpose programming. It explores decomposition, branching, iteration and functions in SPRK.

Resources:
- Sphero or Sphero Sprk+ robot
- Sphero Curriculum available online
- Introductory video of the Sphero and Meet Sphero
- Building and construction materials such as Knex or Lego, cardboard, bottle tops, tape, plastic cups, scissors, tape, straws, pipe cleaners etc (general construction materials)
- Sphero Apps including
 - Sphero Macrolab by Orbotix Inc.
 - SPRK Lightning Lab - Programming for Sphero Robots by Orbotix Inc.
- Examples of adaptations to Sphero - eg Chariot races, Sprk Examples on Pinterest

Prior Student Learning:
Students have been exposed to Sphero using play-based learning, and are able to create simple algorithms using Lightning Lab. They are familiar with the coding aspects to enable basic control of a sphero eg - move in a square.

Digital Technologies Summary

Students design a game based on using a Sphero and create a new product and games space. Students develop skills in designing a solution for a user with specific needs, and being able to communicate their design intentions - with sketch designs, as well as verbally by sharing their designs with peers.

Students will be encouraged to follow the Design and Technologies process:
- investigating and defining
- generating and designing
- producing and implementing
- evaluating
- collaborating and managing.

By reflecting on their own designs, as well as other designs, students develop skills in being able to evaluate designs and provide constructive feedback.

They direct their own learning, plan and carry out investigations, and become independent learners who can apply design thinking, technologies understanding and skills when making decisions. Designing and innovation involve a degree of risk-taking and as students work with the uncertainty of sharing new ideas they develop resilience. (Personal and Social Capability)

<table>
<thead>
<tr>
<th>Band</th>
<th>Content Descriptors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 7-8</td>
<td>Digital Technologies</td>
</tr>
<tr>
<td></td>
<td>Design the user experience of a digital system, generating, evaluating and communicating alternative designs (ACTDIP028)</td>
</tr>
</tbody>
</table>
- Identify features that make a HID interface easy to use and incorporate these into their own design
- Identifying similar digital systems and their user interfaces, assessing whether user interface elements can be re-used.
- Presenting and comparing alternative designs to a solution for a problem, for example presenting alternative design mock-ups to the class

Implement and modify programs with user interfaces involving branching, iteration and functions in a general-purpose programming language (ACTDIP030)

- identify and clarify how functions can be developed using SPRK, and how these functions can be used with parameters
- design, implement, run, and modify a SPRK program that drives a Sphero through a maze using functions
- decompose an algorithm into key functions, and write and test these functions on the Sphero
- modify the program to suit optional challenges

Critical and Creative Thinking

The particular elements of Critical and Creative Thinking addressed:

Generating ideas, possibilities and actions
- Imagine possibilities and connect ideas: draw parallels between known and new ideas to create new ways of achieving goals
- Consider alternatives: generative alternatives and innovative solutions, and adapt ideas, including when information is limited or conflicting
- Seek solutions and put ideas into action: predict possibilities and identify and test consequences when seeking solutions and putting ideas into action

Reflecting on thinking and processes:
- Transfer knowledge into new contexts: justify reasons for decisions when transferring information to similar and different contexts

Analysing, synthesising and evaluating reasoning and procedures
- Apply logic and reasoning: identify gaps in reasoning and missing elements in information

<table>
<thead>
<tr>
<th>Element</th>
<th>Summary of tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning hook</td>
<td>What makes a good game? Present some examples of good games that could include the Sphero. For example, in PacMan, the Sphero can play the role of monsters: https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#g=pacman+online*&clb=clb What elements are essential? Optional? How can we use Sphero to create a game that requires programming to play (not simply using the Drive tool)? Ask the students to think about tasks that are repetitive or complex in the game: for example, if the game is a pong-like game, the Sphero would need to move for a while in one direction, then move into another, etc - this type of behaviour is a good candidate for using functions. Introduce the students to the concept of functions, showing how functions dramatically reduce the number of lines of code we have to write. For each algorithm, students work in groups to identify the basic building blocks for</td>
</tr>
</tbody>
</table>
achieving the task:
- How many building blocks can students identify?
- What are the advantages/disadvantages of using each of them?

Introduce the concept of function parameters and how these are used within functions.

<table>
<thead>
<tr>
<th>Achievement Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Learning Map (Sequence)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Learning input</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Learning construction</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Learning demo</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

- Students define and decompose problems in terms of functional requirements and constraints
- Students design user experiences and algorithms incorporating functions, branching and iterations, and test, modify and implement digital solutions.

- Revisit previous knowledge of Sphero
- Introduce and attempt challenge of creating a game:
 - Rules
 - Game Play
 - Winning condition
 - Integration of Sphero in the game play
- Team teach game to another group, self- and peer-assess
- Challenge: students program the Sphero following the game rules
 - Students write the pseudocode for your algorithm, identifying building blocks that could be used as functions
- Is the Sphero doing something repeatedly?
- Is the Sphero doing something where some key parameters change?
- Students identify the key building blocks for the algorithm
- For example, if a Sphero is playing the role of a monster moving in a maze, like in the game PacMan, the key building block could be:
 - Roll in a straight line for a while, corresponding to x meters (x is a parameter)
 - Make a turn if a variable is set
- The algorithm would then see the repetition of this building block a number of times, with different parameter values.
- This building block is called a function, say move
- Students write the algorithm using repeated calls to move:
 - move(5)
 - move(4)
 - ...
- Students write the SPRK program and test the program in groups
- Students write the code for the Sphero and load the code on it.
- Students test and debug the code in pairs.

- Revisit the coding and use of Sphero - What is possible?
- Discuss elements of a good game - What is the aim of the game? Rules, instructions, variations
- Discuss why/how Sphero may be a good addition to a game

Students are now asked to design a game using Sphero that matches the elements of a ‘good game’ discussed earlier. The choice of game is up to the students, however must be playable by a small groups (2-4 players). A variety of materials will be provided to provoke thoughts and ideas. Students work in small groups.

Demonstrate examples of Sphero games (photos, videos) such as the ones below. Be aware that showing examples may lead to ‘copying’ without thought. Copying with variations will be acceptable.
| Learning reflection | Groups must then combine and team-teach their game to another group. Students must self-assess and peer assess their own game and someone else's based on the following criteria:
 - Ease to understand
 - Fun factor
 - Use of Sphero
 - Creativity

 Class discussion:
 - Was the game a mix of challenge and fun?
 - What sort of features can students think of to enhance the game?
 - What was difficult about creating this game?
 - What are the challenges about coding this game for the Sphero
 - What are the benefits of using functions in this case?
 - Was this game easy to test/debug?
 - What were the challenges when designing the functions?
 - What were some of the advantages?
 - What other things do you need to consider when writing a program with functions?
 - Was it difficult to program the Sphero using functions?
 - What are the advantages and disadvantages of using functions?
 - What was challenging about using functions? |

Assessment:

Formative Assessment

- Teachers could collect evidence of learning and progression, eg. plans, evidence of the design process
- Ability to teach game to another group and respond to questions from the group
- Self- and peer-assessment
<table>
<thead>
<tr>
<th>Criteria</th>
<th>Quantity of knowledge</th>
<th>Quality of understanding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-structural</td>
<td>Uni-structural</td>
</tr>
<tr>
<td>Algorithms</td>
<td>No visual program written within app interface.</td>
<td>Algorithm only shows a limited number of instructions but not allow Sphero to progress</td>
</tr>
<tr>
<td>Programming</td>
<td></td>
<td>or connect.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>No game design used</td>
<td>Basic game design with no features identified, Sphero not well utilised</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basic/good game design with some features identified, Sphero adequately utilised</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td>Poor description and demonstration of game</td>
<td>Fair description of game missing clear instructions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reasonably good description of game with only a few instructions missing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vocabulary</td>
<td>No specific / technical terms used.</td>
<td>The terms program or code may be used as a general description. The terms analogue and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>digital are known and used correctly.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Teacher/Student Instructions:

The Sphero robot is a versatile device in many ways although does not have sensors as in some robots for example meet edison or Sadh and Dot. However there is much that can be done with the Sphero within a visual programming framework using the Tickle app and or MacroLab. Please note that the Sphero Sprk+ is not compatible with all Apps

Bluetooth connectivity can be tricky at times, particularly with a number of other bluetooth devices in the same vicinity. Be sure to leave space enough for students to connect to the right Sphero.

CSER Professional Learning:

This lesson plan corresponds to professional learning in the following CSER Digital Technologies MOOCs:

CSER F-6 Digital Technologies: Extended
- Unit 1 - Fundamental thinking skills

Year 7-8 Next Steps
- Unit 3 - Data & Visualisation: Problem Definition and Design
- Unit 2 - Next Steps 7 & 8 - Functions

See: http://csermoocs.adelaide.edu.au/moocs

Further Resources:

There are many Sphero apps now available to explore with your students on the iPad, more being added over time. Only a few are currently compatible with Sphero SPRK+

Here are some of the ones you might explore with your student

SPRK Lightning Lab - Programming for Sphero Robots by Orbotix Inc, (Sprk+)
Sphero by Orbotix Inc, (Sprk+)
Sphero Exile by Orbotix Inc.
Sphero Golf by Orbotix Inc.
orbBasic for Sphero by Orbotix Inc.
Pass the Sphero by Applaud
Sphero ColorGrab by Orbotix Inc.
Sphero Exile by Orbotix Inc.
Sphero Macrolab by Orbotix Inc. (Sprk+)
Sphero Cam by Orbotix Inc.
Sphero Draw N’ Drive by Orbotix Inc.

Digital Technologies Hub: www.digitaltechnologieshub.edu.au

CSER: https://csermoocs.adelaide.edu.au

Author: Celia Coffa

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Computer Science Education Research (CSER) Group, The University of Adelaide.